
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8127

A Practical Approach of Application Level

Caching for Increase E-Business Performance

Shaina
1
, Mrs. Anshu Kamboj

2

Student, CSE, JCDMCOE, Sirsa, India1

Asst Professor, CSE, JCDMCOE, Sirsa, India 2

Abstract: Today, the E-Business faces the many problems in terms of efficiency, reliability because of large data has

been placed on the servers and the client are using such data at the same and frequently and it also very difficult to

manage the E-Business due to these issues. One solution is middle-Tier Database. For E-Commerce websites there are

mainly two issues, cost and time. As the numbers of users increase, performance related issues needs to be solved by

using caching concepts. In E-Commerce websites dynamic pages are used to provide wider range of interaction than

static HTML pages. At the same time, much performance related issues arises by using dynamic page generation

technologies because of load placed on server-side resources. For many web applications system support for caching is

insufficient. This Paper provides a new way of Application level caching to improve performance of web applications.
Concept of shared and unshared caching has been used in proposed method. This paper has been developed the

algorithm for demonstrate the actual working of the proposed work.

Keywords: Caching, Proxy, Shared, Unshared, Application.

I. INTRODUCTION

The business related web services are often critical part of

infrastructure which is needed for the success of

organization in terms of processing time. The application

performance benefits can be achieved by the query

calculation. The cached objects are often stored in hash

table and balanced tree and indexing which can be byte

stream, numerical value or by the Strings. The application
level cache has been designed with API which allows the

developer to manage the cache contents explicitly. There

are all features likely to the database which can be update

or Modify, Add and Delete. The developers can easily

work with the cache by taking the knowledge of

application specific Structure when caching of data. There

are different approaches for caching which can be

Unshared and Shared. [5].

a. Unshared Caching Architecture

In this approach for Caching of Data, the cache is run

independently. This feature enable feature of avoid the

overhead and complexity of inter-process Communication.

There is method which can be used for deploying a cache

is to publish as a library which will be as a part of
application.

Figure 1: Unshared Architecture

If an application is distributed across multiple processes

which need to access a cache, the unshared architecture

may be unsatisfactory because it requires each process to

manage a different cache. Extra space is required for

storing same data in multiple copies if multiple processes

need to access it.

b. Shared Caching Architecture

To have a cache operate as a long running process which
communicates with multiple processes is known as shared

architecture. Using this architecture, it’s only necessary to

cache one copy of an object. There are two drawbacks to

the shared architecture; one is latency for accessing a

cached object may be higher because inter-process

communication is required. Second drawback is the if the

request rate to a shared cache is high, the cache can

become a bottleneck. [2]

Fig 2 the shared Architecture

The high temporal variability of network traffic results in

communication systems that are congested during peak-

traffic times and underutilized during off-peak times. One

approach to reduce peak traffic is to take advantage of

memories distributed across the network (at end users,

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8128

servers, routers) to duplicate content. This duplication of

content, called content placement or caching, is performed

during off-peak hours when network resources are

abundant. During peak hours, when network resources are

scarce, user requests can then be served from these caches,

reducing network congestion. In this manner, caching

effectively allows to shift traffic from peak to off-peak

hours, thereby smoothing out traffic variability and

reducing congestion. From the above discussion, we see

that the caching problem consists of two distinct phases.
The first phase is the placement phase, which is based

solely on the statistics of the user demands. In this phase,

the network is not congested, and the main limitation is the

size of the cache memories.

Figure 3: HTTP Caching Today

The second phase is the delivery phase, which is

performed once the actual demands of the users have been

revealed. In this phase, the network is congested, and the

main limitation is the rate required to serve the requested

content.

An increasingly large fraction of available bandwidth on

the Internet is being used to transfer documents. Strategies

for reducing the latency of document access, the network

bandwidth demand of document transfers, and the demand

on document servers are becoming increasingly important.
Techniques that could reduce document latency, network

bandwidth demand, and server demand include data

caching and replication. However, in contrast to most

distributed file systems, document transfer services usually

incorporate simple caching strategies, if any, and do not

typically provide location transparency.

While techniques based on distributed file systems could

be used to improve significantly the performance of

document transfer systems, there are a number of

advantages to considering caching and replication at the

application level, rather than at the file system level. First,
application-level caching does not require all users to

agree on a common file system; it enables heterogeneous

systems to participate easily. Second, and more important,

application-level caching allows cache strategies to make

use of the higher semantic content available at the

application level to exploit such information as document

type, user profile, user past history, document content, and

organizational boundaries.

II. LITERATURE REVIEW

Web performance is a key differentiation among content

providers. Snafus and slowdowns at major web sites

demonstrate the difficulty that companies face trying to

scale to a large amount of web traffic. One solution to this

problem is to store web content at server-side and edge-

caches for fast delivery to the end users. However, for

many e-commerce sites, web pages are created

dynamically based on the current state of business

processes, represented in application servers and

databases. Since application servers, databases, web

servers, and caches are independent components, there is

no efficient mechanism to make changes in the database

content reflected to the cached web pages. As a result,
most application servers have to mark dynamically

generated web pages as non-cacheable. In this paper, we

describe the architectural framework of the Cache Portal

system for enabling dynamic content caching for database-

driven e-commerce sites. We describe techniques for

intelligently invalidating dynamically generated web pages

in the caches, thereby enabling caching of web pages

generated based on database contents. They used some of

the most popular components in the industry to illustrate

the deployment and applicability of the proposed

architecture [7].
E-business sites are increasingly utilizing dynamic web

pages since they enable a much wider range of interaction

than static HTML pages can provide. Dynamic page

generation technologies allow a Web site to generate

pages at run-time, based on various parameters. At the

same time, however, dynamic page generation

technologies have resulted in serious performance

problems due to the increased load placed on the server-

side infrastructure. Consequently, end users experience

increased response times. According to recent research [1],

40% of the total page delivery delay experienced by end

users can be attributed to server-side latency. As server-
side techniques such as dynamic page generation

technologies become more widespread, this percentage

will only increase. There has been very little work so far to

address the delays associated with dynamic page

generation. One proposed approach is to cache entire

pages of dynamically generated content (e.g., [3, 5]).

However, caching dynamically generated pages in this

manner is infeasible, since two calls to the same script

with the same input parameters are not guaranteed to

produce the same output [8].

While scaling up to the enormous and growing
Internet population with unpredictable usage patterns,

E-commerce applications face severe challenges in cost

and manageability, especially for database servers that

are deployed as those applications’ back ends in a

multi-tier configuration. Middle-tier database caching is

one solution to this problem. In this paper, author

presented a simple extension to the existing federated

features in DB2 UDB, which enables a regular DB2

instance to become a DBCache without any application

modification. On deployment of a DBCache at an

application server, arbitrary SQL statements generated

from the unchanged application that are intended for a
backend database server, can be answered: at the

cache, at the backend database server, or at both

locations in a distributed manner. The factors that

determine the distribution of workload include the SQL

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8129

statement type, the cache content, the application

requirement on data freshness, and cost-based

optimization at the cache. Author have developed a

research prototype of DBCache, and conducted an

extensive set of experiments with an E-Commerce

benchmark to show the benefits of this approach and

illustrate tradeoffs in caching considerations [9].

 Caching is a technique to reduce peak traffic rates

by prefetching popular content into memories at the end

users. Conventionally, these memories are used to deliver
requested content in part from a locally cached copy rather

than through the network. The gain offered by this

approach, which they term local caching gain, depends on

the local cache size (i.e, the memory available at each

individual user). In this paper, they introduced and exploit

a second, global, caching gain not utilized by conventional

caching schemes. This gain depends on the aggregate

global cache size (i.e., the cumulative memory available at

all users), even though there is no cooperation among the

users. To evaluate and isolate these two gains, they

introduced an information-theoretic formulation of the
caching problem focusing on its basic structure. For this

setting, they proposed a novel coded caching scheme that

exploits both local and global caching gains, leading to a

multiplicative improvement in the peak rate compared to

previously known schemes. In particular, the improvement

can be on the order of the number of users in the network.

Moreover, they argue that the performance of the proposed

scheme is within a constant factor of the information-

theoretic optimum for all values of the problem parameters

[10].

Author considered a network consisting of a file server

connected through a shared link to a number of users, each
equipped with a cache. Knowing the popularity

distribution of the files in the database, the goal is to

optimally populate the caches such as to minimize the

expected load of the shared link. For a single cache, it is

well known that storing the most popular files is optimal

in this setting. However, they show here that this is no

longer the case for multiple caches. Indeed, caching only

the most popular files can be highly suboptimal. Instead, a

fundamentally different approach is needed, in which the

cache contents are used as side information for coded

communication over the shared link. Author proposed
such a coded caching scheme and proves that it is close to

optimal [11].

III. PROPOSED METHODOLOGY

While using a full-fledged database engine for middle-tier

database caching much research question arises.

The answers to some of them affect the relevance of

others. In decreasing order of importance, these are.

1. What are the performance issues in e-Business

applications, or in other words, and does the right

problems are addressed by us focusing on database

caching?

2. Will performance be acceptable using a commercial
DBMS as a middle-tier data cache? Features such as

transactional semantics, consistency, and recovery come

with some operating cost. What features can be dispensed

with in such an situation?

3. What database caching schemes are suitable for e-

Commerce applications?

4. How can a database caching scheme be implemented in

a business database engine and how does it perform under

practical e-Commerce workloads?

5. What is the consequence of running a database server in

the same computer as an application server?

6. How these results can be generalized to other kinds of
web applications?

For middle-tier database caching, using a general-

purpose industrial-strength DBMS is especially

attractive to e- Businesses. This is mainly due to crucial

business requirements such as reliability, scalability and

manageability. For instance, an industrial-strength

DBMS, provides a variety of tools for application

development and closely tracks SQL enhancements.

More importantly, transactional support, multiple

consistency levels, and efficient recovery services is

provided by it. Finally, an ideal cache should be
transparent to the application that uses it, and with a

special-purpose solution it is very difficult to achieve.

Objectives:

1. Remove disadvantages of Shared and Unshared

architecture of caching.

2. Design a new Architecture, Hybrid architecture

by combining both caching architectures.

3. Design an Algorithm which will handle problem

of same data fetching process by maintaining search

keywords and counts.

4. Remove caching Memory to store new Data.

Work Flow of proposed Method:

Fig 4 Flow Chart

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8130

IV. RESULTS

Our Hybrid Caching solution utilizes a application-level

caching approach which focuses on re-using

Shared/Unshared Cache fragments of dynamic pages. An
array consist keywords searched by users with searched

count. When count value cross threshold value, a cache

will be generated and index value stored. It’s shared

caching as one cache of 10 tables is used to store frequent

search items. Large data tables can be stored in unshared

cache. In this case, if we have 2 large pages, we can store

complete page in a dedicated cache called unshared cache.

It is unshared because other page data can overwrite

memory which will destroy page integrity. In our solution,

for frequent search we will use shared cache. 10 tables is

exists in 1 cache. For large pages like Home page, we will

store complete data in unshared cache. So use of both type
of caching scheme according to task will improve

performance of website. A log file is maintained to

measure it’s performance. Each time server connects with

database, connection time is saved in this file. We will

confirm cache working by checking this log file. During

data returned by cache, time shouldn’t exist in this log file

as it only contains time when server connects with

database.

Figure5: Page Returned from Database

The result when use the caching concept is:

Figure6: Search Result returned from Database

Keyword is stored at index 0 with search frequency 1.

Page tool 0.2790159ms

Page load time is shown in every page.

Table 1: Performance Improvement using Application Level Caching

Cache Type Event Time(ms) Returned

from

Unshared Page Load 3.6022060 Database

Unshared Page Load 0.0020001 Cache

Shared Search 0.2790159 Database

Shared Search 0.0030002 Cache

We can see difference of page load time between data

returned from database and cache.

Figure7: Search Result returned from Database

It is clear from the graph that cache has lees time of

execution as compare to database fetching as it has been

reduced the roundtrip from database.

V. CONCLUSION AND FUTURE WORK

 It’s clear from results that caching is effective for large

number of user requests and same kind of searching. Site

performance can be increased using this caching scheme.
A web application has been designed in Asp.net with

caching management algorithm. Results are measured by

running it in local system. This site can be deployed on

server.

Future work includes extending the Caching Scheme and

Algorithm to handle special SQL data types,

statements, and user defined functions. Investigating of

alternatives for handling frequent database updates.

Usability enhancements, such as cache performance

monitoring, and dynamic identification of candidate

tables for caching are important directions for us to

pursue.

REFERNCES

[1] Jim Challenger, Arun Iyengar, and Paul Dantzig,1999, A Scalable

System for Consistently Caching Dynamic Web Data.

[2] Yeol Song, 2000, “Database Design for Real-World E-Commerce

Systems”, IEEE

[3] K. Johnson, J. Carr, M. Day, and M. Kaashoek. 2000, The measured

performance of content distribution networks. In 5th Int. Web

Caching and Content Delivery Workshop, Lisbon, Portugal.

[4] B. Krishnamurthy and C. Wills.2000, Analyzing factors that in ence

end-to-end web performance. In International World Wide Web

Conference.

[5] A. Labrinidis and N. Roussopoulos.2000, WebView Materialization.

In ACM SIGMO.

[6] S. Paul and Z. Fei. 2000. Distributed caching with centralized control.

In 5th Int. Web Caching and Content Delivery Workshop, Portugal.

[7] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and

Divyakant Agrawal. Enabling Dynamic Content Caching for

Database-Driven Web Sites. Proc. ACM SIGMOD International

Conference on Management of Data, Santa Barbara, May 2001.

[8] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra

VanderMeer,2001, A Comparative Study of Alternative Middle

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8131

Tier Caching Solutions to Support Dynamic Web Content

Acceleration

[9] Qiong Luo, Middle-Tier Database Caching for e-Business, 2002.

[10] Mohammad Ali Maddah-Ali and Urs Niesen,2014,Fundamental

Limits of Caching.

[11] Urs Niesen and Mohammad Ali Maddah-Ali, 2014,Coded Caching

with Nonuniform Demands.

